
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration  

 under contract DE-AC04-94AL85000.#

Eric Phipps
etphipp@sandia.gov

Optimization & Uncertainty Quantification Department
Sandia National Laboratories

Albuquerque, NM USA

Software Needs, Opportunities and
Challenges in Polynomial Chaos Modeling

for Large-Scale Applications

Bridging the Gap Between Algorithms
Research and Applications is the Challenge

•  The challenges for UQ software tools stem from a single tension:
– The software users, are not the same as the simulation software

developers, are not the same as the UQ algorithm developers

• Users want software tools that allow them to get their jobs done
– Pick software tools that are “good enough”
– Prefer tools that are easier to use and control rather than the most

efficient or accurate

• Simulation software developers
– Are typically exports on physics/simulation, not UQ
– Make design choices based on available tools and knowledge

• UQ algorithm developers
– Needs software tools to develop algorithms that can impact applications
– Need realistic applications to develop and test those ideas and algorithms

These Challenges Are Not Unique to UQ

• Virtually all areas of advanced analysis suffer from these challenges

• Algorithms require information application codes don’t normally
provide, in order to do the research needed to impact the problems
the applications are trying to solve

• Progress in these areas has been made by identifying the software
“hooks” and tools that makes algorithm research in production
applications feasible

– Optimization -- Derivatives
– Error Estimation -- Adjoints & element residuals
– Stability Analysis -- Access to linear algebra

•  To make progress with UQ & PCE, we must identify these software
hooks and tools needed to impact hard applications

Software Needs, Opportunities and
Challenges (Discussed in this talk)

• Computing and representing stochastic inputs (need)
– PC, KL & Fourier expansions of random fields
– Representing random fields, boundary conditions, and geometries in

software

•  Intrusive PC propagation in individual applications (opportunity)
– Dealing with nonlinearities
– Adaptive and local methods

• PC propagation in coupled systems (challenge)
– Simulation tools for coupled systems
– Stochastically coupling system components

Computing Stochastic Representations

Computing Stochastic Representations

• First challenge in stochastic modeling is computing appropriate
stochastic input representations

– Spectral density (a.k.a. PSD)
• Commonly supplied by engineering codes (e.g., turbulent fluid flow)

– Karhunen-Loeve
– Polynomial Chaos

• Few general tools exist to compute these representations for input
data

– Critical for real science applications
– Overall UQ modeling is only as good as the input representation

Three Software Needs
•  Tools for computing stochastic representations from data, e.g.,

– Maximum likelihood, Bayesian update, least-squares, maximum
entropy, Kalman filter

– What are the software tools needed to implement these algorithms for
general use?

•  Tools that compute representations from other representations
– PSD to PCE

•  A code may generate a PSD as input to another code
•  FFTs may be used to generate realizations, how about PCEs?

– PCE to KL
•  Model reduction based on coarse grid solution (Doostan et al, 2007)
•  Dimension reduction between coupled system components
•  Need tools for large (sparse?) eigenvalue problems. Anything else?

– PECOS
•  New library by Mike Eldred, initially focused on random field realizations

from PSD’s.

Three Software Needs … Continued

• Libraries to incorporate these representations in application codes
– Necessary for both intrusive AND non-intrusive
– Can be done externally through scripts for non-intrusive, but this is not

well integrated (remember users want code that is easy to use!)

• Are existing geometry/discretization libraries sufficient?
– Exodus, NetCDF, HDF5, ???
– Random material properties, geometries, boundary conditions, ???

• Experience has shown changing the library specifications is very
difficult

– Is it possible to build UQ wrappers around these basic libraries

• We must have such tools for UQ & PCE to be widely used

Intrusive PC Propagation in Individual
Applications

Intrusive Galerkin PC Approximation

• Assuming we have a suitable stochastic representation of model
inputs (PCE or K-L, for example)

• Discretized the deterministic part of the problem (e.g., finite-
element)

• Software needs/challenges
– Computing PC residuals (i.e., intrusive propagation)
– Data structures for forming nonlinear PC system and its linearization

via Newton’s method
– Solvers for solving the resulting linear and nonlinear systems

Computing PC Residuals is a Significant
Challenge in Nonlinear Applications

• Transforming simulation code to compute PC residuals is a
significant hurdle for adopting/researching method in complex
applications

• Need methods that can transform existing codes into stochastic
codes easily

• Need libraries that make it easy to build new stochastic codes

• Several approaches
– Compute projections in an operation by operation fashion

• Manual code transformation (most commonly used method)
• Automation of this through an automatic differentiation-like facility
• Automation through symbolic finite elements (Sundance -- Kevin Long)

– Element residual/Jacobian quadrature

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

What is Automatic Differentiation (AD)?

•  Technique to compute analytic derivatives
without hand-coding the derivative
computation

•  How does it work -- freshman calculus
– Computations are composition of

simple operations (+, *, sin(), etc…)
with known derivatives

– Derivatives computed line-by-line,
combined via chain rule

•  Derivatives accurate as original
computation

– No finite-difference truncation errors

•  Provides analytic derivatives without the
time and effort of hand-coding them

Sacado: AD Tools for C++ Applications

• AD via operator overloading and C++ templating
– Expression templates for OO efficiency
– Application code templating for easy incorporation

• Designed for use in large-scale C++ codes
– Apply AD at “element-level”
– Manually integrate derivatives into parallel data structures and solvers
– Sacado::FEApp example demonstrates approach

• Very successful in enabling analytic sensitivity calculations in large-
scale codes
– Charon, Aria, Xyce, Alegra, LAMMPS
– Jacobians, parameter sensitivities, 2nd derivatives

Computing PC Residuals Operation by
Operation via AD

• AD relies on known derivative formulas for all intrinsic operations plus
chain rule

• AD infrastructure provides deep interface into application code
– Access to entire computational graph

• Similar approach can be used for any computation that can be done in an
operation by operation manner

– Assume inductively that PC expansions for two intermediate variables a and b
have been computed, and we wish to compute a third c

Projections of Arithmetic Intermediate
Operations

• Addition/subtraction

• Multiplication

• Division

Projections of Transcendental
Operations More Challenging

• Debusschere et al (2004) proposed two approaches
– Taylor series approximation

• Use arithmetic rules repeatedly until error tolerance achieved
– Time integration

• Transcendental operations satisfy simple differential equations
• By picking integration path, starting and ending points can compute

coefficients using standard time integrator
– Both approaches encapsulated into the UQLib library by Najm,

Debusschere, Ghanem, and Knio

• Third approach also based on differential equations
– Differentiate w.r.t. polynomial argument leads to linear systems for

coefficients of degree > 0, up to scaling
– Degree 0 & scaling computed by summing series at origin
– Not readily extensible to multivariate problems

Another Approach is Quadrature for
Element-Based Codes

• Evaluate via quadrature for globally assembled residual

– Requires parallel quadrature routines but only interface to global residual

• Apply quadrature for each element residual then assemble

– Requires only serial quadrature routines but needs element-level interface
– Boundary conditions add complexity

• Jacobian decomposes similarly

•  In either case, application interface is significantly simpler than op-by-op

Intrusive PCE Requires Much More Than
PC Propagation

• Data structures for forming block PC nonlinear system

• Linear solver/preconditioner methods for solving block PC linear
systems (after linearization)

• Trilinos provides nice opportunity for developing these capabilities

The Trilinos Project

•  http://trilinos.sandia.gov
•  Algorithms and enabling technologies
•  Large-scale scientific and engineering

applications
•  Object oriented framework
•  “String of Pearls”
•  Focus on packages

–  Over 30 packages in 8.0 release
–  Over 40 in development
–  Growing exponentially

Trilinos Packages
Objective Package(s)

Discretizations
Meshing & Spatial Discretizations phdMesh, Intrepid

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Core

Linear algebra objects Epetra, Jpetra, Tpetra

Abstract interfaces Thyra, Stratimikos, RTOp

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils

Solvers

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi

ILU-type preconditioners AztecOO, IFPACK

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos

Trilinos Tools Useful for Intrusive PCE
• Epetra -- MPI-based vector/matrix data structures & operator interfaces

– Used by application codes to form FE residuals, Jacobians
• Thyra -- Abstract vector, operator, and nonlinear interfaces

– Allows abstraction of solver algorithms away from application data structures
– Product vectors for representing block PCE solution/residual vectors

– Operators implementing PCE matrix-vector-product in “matrix-free” fashion
– Nonlinear interface transforming deterministic Thyra interface into PCE

•  Ifpack, ML, Amesos -- Preconditioners and direct solvers
– Approximate inverse of mean (degree 0) PCE block

• AztecOO, Belos -- Iterative linear solvers
– Advanced solvers for block PCE linear systems

• NOX & Rythmos -- Abstract nonlinear solver & time integration algorithms
– Use nonlinear Thyra PCE interface to solve steady & transient PCE problems

Trilinos Package Stokhos
• These ideas form the basis for a new Trilinos package called Stokhos

– Collaborative effort among the PCE community to develop tools for large-scale codes

•  Initial thoughts are Stokhos will provide
– PCE vector/operator interfaces
– Nonlinear PCE application interface
– Solver/preconditioner algorithms
–  Intrusive propagation methods

• Currently it only has
– General facilities for intrusive propagation
– Wrappers around UQLib library of Najm, Debusschere, Ghanem & Knio
–  Implementation of the linear-solve AD approach
– Sacado wraps these for AD PCE

• Sacado::FEApp
– Example 1D finite element code demonstrating AD
–  Initial implementation of PCE solvers/interfaces using Epetra

Sacado::FEApp Demonstration of
Intrusive PCE using Stokhos & Sacado

•  1-D Bratu problem:

•  Exponential parameter dependence just
for fun!

•  Linear finite element discretization, 100
elements

•  Uniform random variables for nonlinear
factor over [-1, 1], PCE using Legendre
polynomials (to avoid bifurcation!)

•  Sacado wrapping Stokhos wrapping
UQLib library, using Taylor series
approach for exponential

•  Matrix free-PCE Jacobian using mean
as preconditioner, Ifpack RILU(0)
preconditioner

•  Solution mean used as quantity of
interest

PCE for 1-D Bratu Problem

•  NIPC using sparse-grid
quadrature (Dakota)

•  Intrusive run time is dominated
by residual and Jacobian fill

•  Solve scaling roughly linearly
•  Suggests quadrature approach

may be more efficient

Beyond Global PCE

• To impact real applications we must deal with lack of smoothness
in parameter spaces

– Bifurcations
– Discontinuities

• Local/adaptive methods
– Wavelet-type approximations (Le Maître et al)
– Finite element-type approximations (Babuska et al)

• What are the tools needed to implement these in complex codes
– In principle, the software ideas for global PCE still apply
– Are product-vector structures the best way to store coefficients?
– We must exploit parallelism over local parameter domains

PC Propagation in Coupled Systems

Coupled Systems Present New Opportunities

• Coupled systems
– System of interacting components
– Each component often simulated by separate code or module
– Overall system driven by some solution process

• Coupled systems are where the funding is going
– One kind of “complex system”?

• Coupled systems provide tremendous opportunities for PC
modeling to impact science applications

– Waste repository modeling
– Nuclear reactor design & licensing
– Fusion reactor design
– Electrical systems

Yucca Mountain

Challenges for PCE Modeling of
Coupled Systems

• Effective simulation tools don’t exist!
– Collection of distinct simulation codes coupled through scripts and

user interaction
– Loose nonlinear coupling that may not represent physics
– Slow and/or inaccurate solution processes

• Picard iteration
• Operator splitting/lagging

– Best case scenario is a an automated system that can be driven by
Monte Carlo

• Opportunities are ripe for PCE modeling
– Exploit coupled system structure
– Apply PCE to each component
– Model reduction between components
– Invert traditional layering of UQ on top of solution processes

Software Path Forward for PCE of
Coupled Systems

• Foundational tools
– Computing stochastic representations
– PC propagation

• Software needs
– Interfaces for coupling components through PCE
– Nonlinear solver software for solving stochastically coupled system
– Simulation tools to put these systems together

• From this we can begin to address these types of problems
– Enable the real algorithm research that must occur

Major Challenges in Important Areas of
PC Modeling

• Computing stochastic representations
– Need tools for computing representations from data
– Need tools for generating PCEs from KL’s and PSD’s, and vice versa

• PC propagation through nonlinear applications
– AD approach is effective, but may not be the most efficient
– Quadrature approach is simpler and may be faster
– Trilinos provides tools to develop solvers optimized for PCE

• PC modeling of coupled systems exploiting structure
– Good simulation tools don’t exist
– Opportunity to exploit structure by inverting UQ over solution layering

Much More To This Story

• Validation
– Comparing to experimental data
– Inverse problems

• Decision support
– Weighing risk against performance

• Higher-order analysis
– Optimization and uncertainty
– Model reduction and uncertainty
– Stability analysis and uncertainty
– Error estimation and uncertainty

